- Published on
What Can Be Done with Databricks? A Comprehensive Use Case Guide
Table of Contents
- Introduction
- 1. Data Processing and ETL
- 2. Big Data Analytics and Business Intelligence
- 3. Machine Learning and AI
- 4. Real-Time Stream Processing
- 5. Delta Lake: Reliable Data Lakes
- 6. Collaborative Data Science
- 7. Job Orchestration and Automation
- 8. Industry-Specific Use Cases
- 9. Data Governance and Security
- 10. Cost Optimization
- Conclusion
- Related Topics
Introduction
Databricks is a cloud-based platform that provides a unified environment for big data processing, machine learning, analytics, and collaboration. Built on top of Apache Spark, it enables organizations to process massive datasets, build sophisticated ML models, and derive insights at scale.
But what can you actually do with Databricks? This comprehensive guide explores real-world use cases, practical applications, and industry-specific scenarios where Databricks shines. Whether you're a data engineer, data scientist, or business analyst, you'll discover how Databricks can transform your data workflows.
1. Data Processing and ETL
Databricks excels at extracting, transforming, and loading (ETL) data at massive scale.
Traditional Batch ETL
Process large datasets from various sources, transform them, and load into data warehouses or data lakes.
Example: Daily Sales Data Processing
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
# Read raw sales data from multiple sources
raw_sales = spark.read.format("csv") \
.option("header", "true") \
.load("s3://raw-data/sales/*.csv")
# Transform data: cleansing, enrichment, aggregation
transformed_sales = raw_sales \
.filter(col("amount") > 0) \
.withColumn("sale_date", to_date(col("timestamp"))) \
.withColumn("revenue", col("amount") * col("quantity")) \
.join(customer_dim, "customer_id") \
.join(product_dim, "product_id")
# Write to Delta Lake for analytics
transformed_sales.write.format("delta") \
.mode("overwrite") \
.partitionBy("sale_date") \
.save("/delta/sales_fact")
Incremental Data Loading
Use Delta Lake's merge capabilities for efficient incremental updates.
Example: Customer Dimension Updates (SCD Type 2)
from delta.tables import *
# Read new customer data
new_customers = spark.read.format("json").load("s3://incoming/customers/")
# Load existing customer dimension
customer_table = DeltaTable.forPath(spark, "/delta/dim_customer")
# Merge with SCD Type 2 logic
customer_table.alias("target").merge(
new_customers.alias("source"),
"target.customer_id = source.customer_id"
).whenMatchedUpdate(
condition = "target.is_current = true AND source.updated_at > target.updated_at",
set = {
"is_current": "false",
"end_date": "source.updated_at"
}
).whenNotMatchedInsert(
values = {
"customer_id": "source.customer_id",
"name": "source.name",
"email": "source.email",
"start_date": "source.updated_at",
"end_date": "null",
"is_current": "true"
}
).execute()
Multi-Format Data Processing
Handle diverse data formats in a single pipeline.
Example: Multi-Source Data Integration
# JSON from APIs
json_data = spark.read.format("json").load("s3://data/events/*.json")
# Parquet from data lake
parquet_data = spark.read.format("parquet").load("s3://data/warehouse/*.parquet")
# CSV from legacy systems
csv_data = spark.read.format("csv") \
.option("header", "true") \
.option("inferSchema", "true") \
.load("s3://data/legacy/*.csv")
# XML from external vendors
xml_data = spark.read.format("xml") \
.option("rowTag", "record") \
.load("s3://data/external/*.xml")
# Unified processing
unified_df = json_data.union(parquet_data.union(csv_data))
Real-World Use Case: Retail Data Pipeline
Scenario: A retail chain processes 50 million transactions daily from 2,000+ stores.
Solution:
# Read from Kafka streams (POS systems)
transactions = spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "broker:9092") \
.option("subscribe", "pos-transactions") \
.load()
# Enrich with store and product dimensions
enriched = transactions \
.join(stores_df, "store_id") \
.join(products_df, "product_id") \
.join(promotions_df, ["product_id", "date"], "left")
# Aggregate by region and product category
aggregated = enriched \
.groupBy(
window(col("timestamp"), "1 hour"),
col("region"),
col("category")
) \
.agg(
sum("amount").alias("total_revenue"),
count("transaction_id").alias("transaction_count"),
avg("amount").alias("avg_transaction_value")
)
# Write to Delta Lake
aggregated.writeStream \
.format("delta") \
.outputMode("append") \
.option("checkpointLocation", "/delta/checkpoints/retail") \
.start("/delta/retail_analytics")
2. Big Data Analytics and Business Intelligence
Databricks SQL provides BI-grade performance for interactive analytics on massive datasets.
Interactive SQL Analytics
Example: E-commerce Customer Behavior Analysis
-- Cohort analysis: customer retention over time
WITH first_purchase AS (
SELECT
customer_id,
DATE_TRUNC('month', MIN(order_date)) as cohort_month
FROM orders
GROUP BY customer_id
),
monthly_activity AS (
SELECT
f.cohort_month,
DATE_TRUNC('month', o.order_date) as activity_month,
COUNT(DISTINCT o.customer_id) as active_customers
FROM first_purchase f
JOIN orders o ON f.customer_id = o.customer_id
GROUP BY f.cohort_month, DATE_TRUNC('month', o.order_date)
)
SELECT
cohort_month,
activity_month,
active_customers,
active_customers / FIRST_VALUE(active_customers) OVER (
PARTITION BY cohort_month
ORDER BY activity_month
) * 100 as retention_rate
FROM monthly_activity
ORDER BY cohort_month, activity_month;
Advanced Analytics with Window Functions
Example: Sales Performance Ranking
-- Identify top-performing products by region with trend analysis
SELECT
region,
product_name,
month,
revenue,
RANK() OVER (PARTITION BY region, month ORDER BY revenue DESC) as rank,
revenue - LAG(revenue) OVER (PARTITION BY region, product_name ORDER BY month) as mom_change,
AVG(revenue) OVER (
PARTITION BY region, product_name
ORDER BY month
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
) as rolling_3month_avg
FROM product_revenue
WHERE month >= '2024-01-01'
ORDER BY region, month, rank;
Real-World Use Case: Financial Services Analytics
Scenario: Investment firm analyzes billions of trading records for risk assessment.
-- Risk exposure analysis with real-time position calculation
CREATE OR REPLACE TEMP VIEW risk_positions AS
SELECT
trader_id,
security_type,
SUM(CASE WHEN trade_type = 'BUY' THEN quantity ELSE -quantity END) as net_position,
SUM(CASE WHEN trade_type = 'BUY' THEN quantity * price ELSE -quantity * price END) as position_value,
AVG(volatility) as avg_volatility,
MAX(last_updated) as last_trade_time
FROM trades t
JOIN securities s ON t.security_id = s.security_id
WHERE trade_date >= CURRENT_DATE - INTERVAL 30 DAYS
GROUP BY trader_id, security_type;
-- Calculate Value at Risk (VaR) by trader
SELECT
trader_id,
SUM(position_value) as total_exposure,
SUM(position_value * avg_volatility * 2.33) as var_99_percent,
COUNT(DISTINCT security_type) as diversification_score,
CASE
WHEN SUM(position_value * avg_volatility * 2.33) > 1000000 THEN 'HIGH_RISK'
WHEN SUM(position_value * avg_volatility * 2.33) > 500000 THEN 'MEDIUM_RISK'
ELSE 'LOW_RISK'
END as risk_category
FROM risk_positions
GROUP BY trader_id
HAVING SUM(ABS(position_value)) > 0
ORDER BY var_99_percent DESC;
3. Machine Learning and AI
Databricks provides an end-to-end ML platform with MLflow, AutoML, and Feature Store.
Classical Machine Learning
Example: Customer Churn Prediction
from pyspark.ml.feature import VectorAssembler, StandardScaler
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml import Pipeline
import mlflow
import mlflow.spark
# Prepare features
feature_cols = ['tenure', 'monthly_charges', 'total_charges', 'num_products', 'support_calls']
assembler = VectorAssembler(inputCols=feature_cols, outputCol="features_raw")
scaler = StandardScaler(inputCol="features_raw", outputCol="features")
# Define model
rf = RandomForestClassifier(
featuresCol="features",
labelCol="churned",
numTrees=100,
maxDepth=10
)
# Create pipeline
pipeline = Pipeline(stages=[assembler, scaler, rf])
# MLflow experiment tracking
with mlflow.start_run(run_name="churn_prediction_v1"):
# Train model
model = pipeline.fit(train_df)
# Make predictions
predictions = model.transform(test_df)
# Calculate metrics
from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator(labelCol="churned", metricName="areaUnderROC")
auc = evaluator.evaluate(predictions)
# Log metrics and model
mlflow.log_param("num_trees", 100)
mlflow.log_param("max_depth", 10)
mlflow.log_metric("auc", auc)
mlflow.spark.log_model(model, "model")
print(f"Model AUC: {auc:.4f}")
Deep Learning with TensorFlow
Example: Product Image Classification
import tensorflow as tf
from tensorflow import keras
import mlflow.tensorflow
# Load preprocessed image data
train_images = spark.read.format("delta").load("/delta/product_images/train")
val_images = spark.read.format("delta").load("/delta/product_images/validation")
# Convert to TensorFlow datasets
train_dataset = tf.data.Dataset.from_tensor_slices((train_images.images, train_images.labels))
val_dataset = tf.data.Dataset.from_tensor_slices((val_images.images, val_images.labels))
# Define CNN model
model = keras.Sequential([
keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(128, (3, 3), activation='relu'),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation='softmax')
])
# Compile and train
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
# MLflow autologging for TensorFlow
mlflow.tensorflow.autolog()
with mlflow.start_run():
history = model.fit(
train_dataset.batch(32),
validation_data=val_dataset.batch(32),
epochs=50
)
AutoML for Rapid Prototyping
Example: Automated Model Selection
from databricks import automl
# Load customer data
df = spark.table("customers.churn_features")
# Run AutoML
summary = automl.classify(
dataset=df,
target_col="churned",
primary_metric="f1",
timeout_minutes=60,
max_trials=100
)
# Best model is automatically logged to MLflow
print(f"Best model: {summary.best_trial.model_description}")
print(f"F1 Score: {summary.best_trial.metrics['f1_score']:.4f}")
# Generate notebook with best model code
summary.best_trial.to_notebook()
Real-World Use Case: Healthcare Predictive Analytics
Scenario: Hospital system predicts patient readmission risk.
from databricks.feature_store import FeatureStoreClient
fs = FeatureStoreClient()
# Create feature table with patient history
patient_features = spark.sql("""
SELECT
patient_id,
AVG(length_of_stay) as avg_los,
COUNT(*) as num_admissions,
SUM(CASE WHEN emergency_admission THEN 1 ELSE 0 END) as emergency_count,
MAX(comorbidity_score) as max_comorbidity,
DATEDIFF(CURRENT_DATE, MIN(admission_date)) as patient_history_days
FROM admissions
GROUP BY patient_id
""")
# Register features
fs.create_table(
name="healthcare.patient_features",
primary_keys=["patient_id"],
df=patient_features,
description="Aggregated patient admission history"
)
# Train readmission prediction model
training_set = fs.create_training_set(
df=labels_df,
feature_lookups=[
FeatureLookup(
table_name="healthcare.patient_features",
lookup_key="patient_id"
)
],
label="readmitted_within_30days"
)
# AutoML handles feature engineering automatically
summary = automl.classify(
dataset=training_set.load_df(),
target_col="readmitted_within_30days",
timeout_minutes=90
)
4. Real-Time Stream Processing
Process and analyze data streams in real-time with Structured Streaming.
IoT Sensor Data Processing
Example: Manufacturing Equipment Monitoring
from pyspark.sql.functions import *
# Read from IoT Hub/Event Hub
sensor_stream = spark.readStream \
.format("eventhubs") \
.option("eventhubs.connectionString", connection_string) \
.load()
# Parse and process sensor data
parsed_stream = sensor_stream \
.selectExpr("CAST(body AS STRING) as json_data") \
.select(from_json(col("json_data"), sensor_schema).alias("data")) \
.select("data.*")
# Detect anomalies
anomalies = parsed_stream \
.withColumn("temp_anomaly",
when(col("temperature") > 100, True).otherwise(False)) \
.withColumn("vibration_anomaly",
when(col("vibration") > 50, True).otherwise(False)) \
.filter(col("temp_anomaly") | col("vibration_anomaly"))
# Alert system
def send_alert(batch_df, batch_id):
alerts = batch_df.collect()
for alert in alerts:
# Send to alerting system
send_notification(alert)
anomalies.writeStream \
.foreachBatch(send_alert) \
.start()
# Aggregate metrics
metrics = parsed_stream \
.groupBy(
window(col("timestamp"), "5 minutes"),
col("machine_id")
) \
.agg(
avg("temperature").alias("avg_temp"),
max("temperature").alias("max_temp"),
avg("vibration").alias("avg_vibration"),
count("*").alias("reading_count")
)
# Write to Delta Lake for analytics
metrics.writeStream \
.format("delta") \
.outputMode("append") \
.option("checkpointLocation", "/delta/checkpoints/iot") \
.start("/delta/iot_metrics")
Clickstream Analytics
Example: Real-Time Website Behavior Analysis
# Read clickstream from Kafka
clicks = spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "broker:9092") \
.option("subscribe", "website-clicks") \
.load()
# Parse and sessionize
sessionized = clicks \
.selectExpr("CAST(value AS STRING) as json") \
.select(from_json(col("json"), click_schema).alias("data")) \
.select("data.*") \
.withWatermark("timestamp", "10 minutes") \
.groupBy(
window(col("timestamp"), "30 minutes"),
col("user_id")
) \
.agg(
count("*").alias("page_views"),
countDistinct("page_url").alias("unique_pages"),
sum(col("time_on_page")).alias("total_time"),
collect_list("page_url").alias("page_sequence")
)
# Real-time personalization
def update_recommendations(batch_df, batch_id):
# Update recommendation engine
batch_df.write.format("delta").mode("append").save("/delta/user_sessions")
# Trigger ML inference
recommendations = recommendation_model.transform(batch_df)
recommendations.write.format("redis").save()
sessionized.writeStream \
.foreachBatch(update_recommendations) \
.start()
5. Delta Lake: Reliable Data Lakes
Delta Lake brings ACID transactions, time travel, and schema evolution to data lakes.
Time Travel and Versioning
Example: Data Audit and Rollback
from delta.tables import *
# Query historical data
df_yesterday = spark.read.format("delta") \
.option("versionAsOf", 5) \
.load("/delta/transactions")
# Time travel with timestamp
df_last_week = spark.read.format("delta") \
.option("timestampAsOf", "2024-01-07") \
.load("/delta/transactions")
# View change history
delta_table = DeltaTable.forPath(spark, "/delta/transactions")
history = delta_table.history()
history.select("version", "timestamp", "operation", "operationMetrics").show()
# Rollback to previous version
delta_table.restoreToVersion(5)
ACID Transactions and Concurrent Updates
Example: Multi-User Data Updates
# Multiple users can safely update simultaneously
deltaTable = DeltaTable.forPath(spark, "/delta/inventory")
# User 1: Update stock levels
deltaTable.update(
condition = "product_id = 'ABC123'",
set = {"stock_level": "stock_level - 5"}
)
# User 2: Update pricing (concurrent operation)
deltaTable.update(
condition = "category = 'Electronics'",
set = {"price": "price * 0.9"} # 10% discount
)
# User 3: Delete discontinued products (concurrent operation)
deltaTable.delete("discontinued = true")
Schema Evolution
Example: Handling Schema Changes
# Original schema
original_data = spark.read.format("delta").load("/delta/customers")
# New data with additional columns
new_data = spark.read.format("json").load("s3://new-data/customers_v2/")
# Automatic schema merging
new_data.write.format("delta") \
.mode("append") \
.option("mergeSchema", "true") \
.save("/delta/customers")
# Schema evolution with constraints
deltaTable = DeltaTable.forPath(spark, "/delta/customers")
deltaTable.alter().addColumns([
"loyalty_points INT",
"preferred_contact STRING"
])
6. Collaborative Data Science
Databricks notebooks enable real-time collaboration across teams.
Multi-Language Support
Example: Cross-Functional Analysis
# Cell 1: Python - Data Engineer prepares data
df = spark.read.format("delta").load("/delta/sales")
df.createOrReplaceTempView("sales_data")
-- Cell 2: SQL - Data Analyst queries data
SELECT
product_category,
SUM(revenue) as total_revenue,
COUNT(DISTINCT customer_id) as unique_customers
FROM sales_data
WHERE sale_date >= '2024-01-01'
GROUP BY product_category
ORDER BY total_revenue DESC
# Cell 3: Python - Data Scientist builds model
results = spark.sql("SELECT * FROM sales_data WHERE revenue > 1000")
ml_features = results.select("customer_id", "revenue", "frequency", "recency")
from sklearn.cluster import KMeans
# Build customer segmentation model
# Cell 4: R - Statistician performs analysis
library(SparkR)
sales_r <- sql("SELECT * FROM sales_data")
correlation_matrix <- cor(sales_r[, c("revenue", "quantity", "discount")])
Version Control Integration
Example: Git Integration for Notebooks
# Databricks CLI - Sync notebooks with Git
databricks repos create \
--url https://github.com/company/data-science \
--provider github
# Pull latest changes
databricks repos update --repo-id 123 --branch main
# Commit changes
databricks repos commit \
--repo-id 123 \
--message "Add customer segmentation notebook"
7. Job Orchestration and Automation
Schedule and orchestrate complex data workflows.
Databricks Jobs
Example: Daily ETL Pipeline Job
# Create job via API
import requests
job_config = {
"name": "daily_etl_pipeline",
"tasks": [
{
"task_key": "extract_data",
"notebook_task": {
"notebook_path": "/Shared/ETL/extract",
"base_parameters": {"date": "{{run_date}}"}
},
"new_cluster": {
"spark_version": "13.3.x-scala2.12",
"node_type_id": "i3.xlarge",
"num_workers": 4
}
},
{
"task_key": "transform_data",
"depends_on": [{"task_key": "extract_data"}],
"notebook_task": {
"notebook_path": "/Shared/ETL/transform"
},
"existing_cluster_id": "0701-cluster-id"
},
{
"task_key": "load_data",
"depends_on": [{"task_key": "transform_data"}],
"notebook_task": {
"notebook_path": "/Shared/ETL/load"
}
}
],
"schedule": {
"quartz_cron_expression": "0 0 2 * * ?",
"timezone_id": "America/New_York"
},
"email_notifications": {
"on_failure": ["[email protected]"]
}
}
response = requests.post(
f"{workspace_url}/api/2.1/jobs/create",
headers={"Authorization": f"Bearer {token}"},
json=job_config
)
Airflow Integration
Example: Complex Multi-Step Workflow
from airflow import DAG
from airflow.providers.databricks.operators.databricks import DatabricksSubmitRunOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'data-engineering',
'depends_on_past': False,
'email_on_failure': True,
'email_on_retry': False,
'retries': 2,
'retry_delay': timedelta(minutes=5)
}
dag = DAG(
'databricks_ml_pipeline',
default_args=default_args,
schedule_interval='@daily',
start_date=datetime(2024, 1, 1)
)
# Task 1: Data ingestion
ingest_data = DatabricksSubmitRunOperator(
task_id='ingest_data',
databricks_conn_id='databricks_default',
existing_cluster_id='cluster-id',
notebook_task={
'notebook_path': '/Production/Ingestion/daily_ingest',
'base_parameters': {'date': '{{ ds }}'}
},
dag=dag
)
# Task 2: Feature engineering
engineer_features = DatabricksSubmitRunOperator(
task_id='engineer_features',
databricks_conn_id='databricks_default',
existing_cluster_id='cluster-id',
notebook_task={
'notebook_path': '/Production/Features/compute_features'
},
dag=dag
)
# Task 3: Model training
train_model = DatabricksSubmitRunOperator(
task_id='train_model',
databricks_conn_id='databricks_default',
new_cluster={
'spark_version': '13.3.x-scala2.12',
'node_type_id': 'i3.xlarge',
'num_workers': 8,
'spark_conf': {'spark.speculation': 'true'}
},
notebook_task={
'notebook_path': '/Production/ML/train'
},
dag=dag
)
# Task 4: Model deployment
deploy_model = DatabricksSubmitRunOperator(
task_id='deploy_model',
databricks_conn_id='databricks_default',
existing_cluster_id='cluster-id',
notebook_task={
'notebook_path': '/Production/ML/deploy'
},
dag=dag
)
# Define dependencies
ingest_data >> engineer_features >> train_model >> deploy_model
8. Industry-Specific Use Cases
Financial Services
Fraud Detection
# Real-time fraud detection on transactions
transactions = spark.readStream \
.format("kafka") \
.option("subscribe", "transactions") \
.load()
# Feature engineering
features = transactions \
.withColumn("hour_of_day", hour(col("timestamp"))) \
.withColumn("day_of_week", dayofweek(col("timestamp"))) \
.withColumn("amount_zscore",
(col("amount") - avg("amount").over(user_window)) /
stddev("amount").over(user_window))
# Load fraud detection model
fraud_model = mlflow.pyfunc.load_model("models:/fraud_detection/Production")
# Score transactions in real-time
scored = fraud_model.predict(features)
alerts = scored.filter(col("fraud_probability") > 0.8)
# Send to security team
alerts.writeStream.foreachBatch(send_fraud_alert).start()
Healthcare
Patient Risk Stratification
-- Identify high-risk patients for preventive care
SELECT
patient_id,
age,
num_chronic_conditions,
num_emergency_visits_12mo,
total_healthcare_cost_12mo,
CASE
WHEN num_emergency_visits_12mo >= 3
AND num_chronic_conditions >= 2 THEN 'VERY_HIGH'
WHEN num_emergency_visits_12mo >= 2
OR num_chronic_conditions >= 3 THEN 'HIGH'
WHEN total_healthcare_cost_12mo > 50000 THEN 'MEDIUM'
ELSE 'LOW'
END as risk_score
FROM patient_summary
WHERE is_active = true
Retail and E-Commerce
Product Recommendation Engine
from pyspark.ml.recommendation import ALS
# Load user-product interactions
interactions = spark.read.format("delta").load("/delta/interactions")
# Train ALS model
als = ALS(
userCol="user_id",
itemCol="product_id",
ratingCol="rating",
coldStartStrategy="drop"
)
model = als.fit(interactions)
# Generate recommendations for all users
user_recs = model.recommendForAllUsers(10)
# Deploy to real-time serving
user_recs.write.format("delta").mode("overwrite").save("/delta/recommendations")
Telecommunications
Network Optimization
# Analyze cell tower performance
tower_metrics = spark.read.format("delta").load("/delta/tower_metrics")
# Identify congestion patterns
congestion_analysis = tower_metrics \
.groupBy("tower_id", "hour_of_day") \
.agg(
avg("active_connections").alias("avg_connections"),
max("active_connections").alias("peak_connections"),
avg("bandwidth_utilization").alias("avg_bandwidth"),
sum("dropped_calls").alias("total_dropped_calls")
) \
.withColumn("congestion_score",
col("avg_bandwidth") * 0.4 +
col("total_dropped_calls") * 0.6)
# Recommend capacity expansion
high_congestion = congestion_analysis.filter(col("congestion_score") > 80)
9. Data Governance and Security
Unity Catalog
Example: Fine-Grained Access Control
-- Create catalog structure
CREATE CATALOG production;
CREATE SCHEMA production.customer_data;
-- Grant permissions by role
GRANT SELECT ON SCHEMA production.customer_data TO `data_analysts`;
GRANT MODIFY ON SCHEMA production.customer_data TO `data_engineers`;
GRANT ALL PRIVILEGES ON SCHEMA production.customer_data TO `data_admins`;
-- Column-level security
CREATE TABLE production.customer_data.customers (
customer_id STRING,
name STRING,
email STRING,
ssn STRING,
purchase_history ARRAY<STRING>
) WITH (
row_filter = "region = current_user_region()",
column_mask_ssn = "CASE WHEN is_member('pii_readers') THEN ssn ELSE 'XXX-XX-XXXX' END"
);
Data Lineage
Track data from source to consumption for compliance and debugging.
# Query lineage information
lineage = spark.sql("""
SELECT
source_table,
target_table,
transformation_type,
last_updated,
updated_by
FROM system.lineage.table_lineage
WHERE target_table = 'production.customer_data.customers'
""")
10. Cost Optimization
Photon Engine
Enable Photon for 3-8x faster queries with lower costs.
-- Use Databricks SQL with Photon
SELECT
product_category,
COUNT(*) as order_count,
SUM(order_value) as total_revenue
FROM orders
WHERE order_date >= '2024-01-01'
GROUP BY product_category;
Autoscaling and Spot Instances
# Job cluster with autoscaling and spot instances
cluster_config = {
"autoscale": {
"min_workers": 2,
"max_workers": 20
},
"aws_attributes": {
"availability": "SPOT_WITH_FALLBACK",
"spot_bid_price_percent": 100
},
"spark_conf": {
"spark.databricks.delta.optimizeWrite.enabled": "true",
"spark.databricks.delta.autoCompact.enabled": "true"
}
}
Conclusion
Databricks is a versatile platform that handles the full spectrum of data and AI workloads:
For Data Engineers: Build robust ETL pipelines, manage data quality, and create reliable data lakes with Delta Lake.
For Data Scientists: Train ML models at scale, track experiments with MLflow, and deploy models to production seamlessly.
For Data Analysts: Query petabyte-scale datasets with SQL, create interactive dashboards, and derive business insights.
For ML Engineers: Operationalize ML workflows, manage feature stores, and serve models in real-time.
From startups processing gigabytes to enterprises handling petabytes, Databricks scales to meet your needs while providing enterprise-grade security, governance, and compliance.
Related Topics
- Databricks Overview - Comprehensive platform guide with architecture details
- Apache Spark - Understanding the engine powering Databricks
- PySpark - Python API for Spark on Databricks
- Apache Airflow - Orchestration tool that integrates with Databricks
- Connecting to PostgreSQL with PySpark - Database integration patterns
Related Articles
Apache Spark and PySpark
Apache Spark and PySpark are the most popular big data processing frameworks. They are used to process large datasets in a distributed manner.
What is Databricks? A Comprehensive Guide
Databricks is a cloud-based, unified data analytics platform designed to help organizations streamline their big data and AI initiatives. This comprehensive guide explores key features, architecture, benefits, practical use cases, and hands-on guidance for getting started with Databricks.
Apache Kafka: Complete Guide to Distributed Event Streaming
Master Apache Kafka, the distributed event streaming platform powering real-time data pipelines at scale. Learn Kafka architecture, producers, consumers, Kafka Streams, Kafka Connect, and best practices for building production event-driven systems.